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Abstract —Voltage and current cannot he defined uniquely for microstrip

except at zero frequency, and therefore microstrip has not been rigorously

incorporated into circuit theory. However, in engineering practice, micro-

strip exhibits an apparent characteristic impedance, denoted here by ZA,

that can be measured.

Three methods of measuring ZA were devised and used in measuring

three impedance levels of microstrip. These methods are described and

experimental results presented. The measurements of ZA were found to be

consistent with the power-current characteristic impedance definition of the

approximate longitudinal-section electric (LSE) model of nricrostrip. Sim-

ple approximate formulas for representing ZA are afso discussed,

I. INTRODUCTION

I MPEDANCE IS a fundamental concept in microwave

circuit design because the impedances of circuit elements

and their interconnections determine the distribution of
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shared sponsorship of the Communications Satellite Corporation and the
COMPACT Engineering Division of COMSAT General Integrated Sys-
tems Corporation.
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the Apparent
Microstrip

power within a circuit. The ability of a microwave engineer

to predict circuit performance will partially depend on the

accuracy of the knowledge of impedances for available

circuit elements.

This paper examines the frequency variation of the

apparent characteristic impedance of a microstrip trans-

mission line. From a practical viewpoint, the term “char-

acteristic impedance” used here is the impedance parame-

ter of a circuit-theory based model of a transmission line

which is used in a circuit description with other elements to

predict the actual performance of a physical circuit, An

example is the parameter ZO used in a computer-aided

design (CAD) program, such as SUPER-COMPACTTM. Micro-

stnp is not a TEM line, and so voltage and current, and

thus characteristic impedance, cannot be defined uniquely.

The term “apparent characteristic impedance” is used to

denote a parameter that describes how microstrip ex-

changes power with a TEM line, just as characteristic

impedance is the parameter that determines how one. TEM

line exchanges power with another. The purpose of this
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usage is to accommodate microstrip to circuit theory and ‘r—---, ~ +—’2

to interconnections with TEM elements, while recognizing Zo,?
“1 o ~ Iv,

that it is not a TEM structure itself. l— —t-
This definition distinguishes the concept presented in

this paper from definitions of convenience or intuition,

such as those discussed by Bianco et al. [1] or from those

based on wave impedance, as proposed previously [2].

There is wide disagreement in the microwave community

about how microstrip characteristic impedance should be

defined. As shown clearly by Bianco et al. [1], different

reasonable definitions have widely different variations with

frequency. The work described in this paper attempted to

further resolve the question by making actual measure-

ments of apparent characteristic impedance. Napoli and

Hughes [3] made measurements intended to display micro-

strip characteristic impedance, but their results appear to

be obscured by connector and transition reflection interac-

tions.

Three measurement methods will be described, along

with the results of measurements on microstrip lines of

three nominal impedance levels. Then, mathematical mod-

els of different complexity will be discussed. First, how-

ever, some background theory will be given to explain the

present confusion over the frequency variation of micro-

strip characteristic impedance, and illuminate the apparent

impedance variations observed on measurements of micro-

strip lines.

II. THEORETICAL BACKGROUND

A transmission line is completely characterized in circuit

theory by characteristic impedance 20, a propagation con-

stant y, and length 1, using voltage V and current 1 as

variables (Fig. 1). The problem to be discussed would not

be avoided by employing wave formalism rather than

voltage and current. If a microstrip transmission line (Fig.

2) is to be designed into circuits which also have lumped

elements and TEM transmission lines, then V, 1, and 20

for the microstrip need to be defined to be unique and

compatible with V, 1, and Z of the other circuit elements.

Microwave circuit theory, which is employed in micro-

wave frequency-domain CAD programs, such as SUPER-

COMPACTTM, requires that Kirchoff’s voltage and current

laws hold at junctions interconnecting all elements such as

lumped elements, transmission lines, and other n-ports. A

port can be represented by two wires carrying equal but

opposite sinusoidal currents of maximum value 1 and

having maximum sinusoidal voltage V between the wires.

Then average”power P entering the port is

P=~Re VI* (1)

and the impedance Z presented by the port is

Z= V/I. (2)

Now, P is an absolute physical quantity, but Z is relative

to an arbitrary definition or reference level. That is, either

v or 1 could be set arbitrarily and the other adjusted to

give the required value of P. However, V and 1 of low-

frequency circuit theory are related to electric and mag-

Fig. 1. Circuit theory representation of a transmission line.

l—

v I

Fig. 2. Microstrip transmission line.

netic fields ~ and ~ at a port of a physical two-conductor

‘circuit element by

v= .
J

C2E. di (3)
cl

and

#
I= ~.di (4)

c

where the first integral is taken from one conductor (Cl) to

the other ( C2), and the second integral is taken around one

of the conductors (C). The power entering the element in

terms of the fields is given by

(5)

where A is a surface through which power flows and on

which the paths of integration of (3) and (4) lie. Thus, A is

a terminal surface for a physical two-port. Of course, (1)

and (5) must be equal if the circuit element is to be

represented in circuit theory terms.

Equations (3) and (4) for voltage and current are useful

because they are unique, that is, independent of the path of

integration on the terminal surface. This is the case for

elements, junctions, and ports which have dimensions that

are small in wavelengths. These equations are special cases

of Maxwell’s curl equations for charge and current-free

regions

(6)

(7)

The path of integration for (6) can be considered to go

from one conductor to the other and return via a different

path, thus generating the surface A over which the integral

on the right is taken.

For low frequencies, the time variation of the integrands

on the right of (6) and (7) is nearly zero; these equations

are independent of path and equivalent to the voltage and

current equations (3) and (4).

At the terminal surface of a TEM transmission line,

there are no longitudinal components of the fields to

contribute to the surface integrals of (6) and (7); therefore,

these equations again are equivalent to the voltage and

current equations. Thus, unique values of voltage and
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Fig. 3. (a) Conventional microstrip and (b) its LSE model.

current can be defined by (3) and (4) for the TEM line,

and if it is terminated without reflection, (2) yields its

characteristic impedance ZO.

A microstrip line, however, has longitudinal components

of both electric and magnetic fields, except at zero

frequency [4]; consequently, the integrals on the right of (6)

and (7) cannot be neglected. Therefore, voltage and current

cannot be defined independently of the path of integration

by (3) and (4). Thus, (1) and (2) do not hold, and micro-

strip cannot be incorporated rigorously into circuit theory.

The differing variations of microstrip characteristic im-

pedance with frequency illustrated by Bianco et al. [1]can

be traced to the use of (3) and (4) with different paths of

integration, and the fact that transverse field configura-

tions in microstrip are not constant with frequency as they

are for all homogeneous transmission lines and waveguides.

Nevertheless, a microstrip line is used in practical circuits

with conventional lumped elements and TEM lines. Its

propagation constant can be calculated by rigorous [4] or

approximate [5] analytical methods or measured on the

bench. Microstrip characteristic impedance at zero fre-

quency is predictable; only its frequency variation cannot

be defined uniquely. However, it appears to have a specific

characteristic impedance at each frequency when measured

against a transmission line of known ZO, as will be shown.

This apparent characteristic impedance will be referred to

as ZA to emphasize that it is not defined in terms of

voltage and current, but in terms of its exchange of power

with another circuit that can be described in terms of

voltage and current.

An analytical approach to ZA is possible by sacrificing
rigor and employing the longitudinal-section electric (LSE)

model of rnicrostrip [5]. This approximate model has been

used to predict microstrip dispersion [5], the filling factor,

and the frequency variations of different definitions of

characteristic impedance [1].

Cross sections of both microstrip and the LSE model are

shown in Fig. 3. The LSE model is characterized by an

electric field which is entirely tangential to the air– dielectric

interfaces. It is a hypothetical inhomogenous transmission

line that carries a single LSE mode [6], and its zero-

frequency parameters can be the same as those of the

microstrip that it is to simulate. Its single-mode simplicity

makes it useful for calculating the frequency behavior of

microstrip parameters.

Expressions for the fields of the LSE model are given in

the Appendix. It should be observed that the model has a

longitudinal magnetic field but no longitudinal electric

field. Therefore, (6) and hence (3) for voltage are path

dependent; however, (7) and (4) defining longitudinal cur-

rent are equivalent. Thus, a unique current, consistent with

circuit theory, can be defined for the LSE model from its

field configuration, but a unique voltage cannot. It follows

that ZA for the LSE model can be defined in terms of

power and current by

ZA = 2P/1*1 (8)

and that voltage for the LSE model can be given by

V= 2P/1*. (9)

Equations (8) and (9) are consistent with both electromag-

netic theory and circuit theory for the LSE model.

In the Appendix, an expression for ZA is derived from

the fields of the LSE model in terms of commonly em-

ployed microstrip parameters. The measurements of ZA

will now be discussed to investigate how well the LSE

model characterizes actual microstrip transmission lines.

III. MEASUREMENT METHODS AND MEASURED

RESULTS

Three different methods were used to perform measure-

ments on microstrip lines having nominal impedances of

32.5 Q, 48 Q, and 70 Q. In each case, the microstrip line

was abruptly joined to a coaxial line of known characteris-

tic impedance, Z1 = 50.0 Q. Even though the connection

was abrupt, the physical discontinuity y created a transition

circuit between the two uniform lines as indicated in Fig. 4.

The transition circuit can be represented by a tee or pi

LC network, as shown in Fig. 5. In most practical micro-

strip-to-coaxial-line transitions, the LC product is much

less than l/u2 at the highest frequency normally used. This

constraint allows the transition circuit to be represented

with reasonable accuracy by either a tee or a pi, or by an

L-section of either orientation. Also, all of one element and

some of the other can be made to simulate a short section

of transmission line of specified impedance and can be

appended to either the coaxial line or the rnicrostrip,

leaving only a single residual lumped reactance or suscep-

tance. The lumped-element equivalences of Fig. 5 can be

demonstrated comparing their ABCD matrices with small

terms suppressed according to U2LC <<1. The transmis-

sion-line equivalents can be demonstrated by conversion to

their image-impedance lumped element representations.

The underlying philosophy of the measurement was to

minimize errors and obtain maximum information about

the rnicrostrip line. To this end, the test pieces were based

on a substrate 10 times thicker than the 0.025-in thick

substrate widely used for microwave circuits. This in-

creased wavelengths and reduced the effects of mechanical

tolerances. It allowed the use of GR-900 connectors which

have small reflections (VSWR less than 1.001+0.001X

~(GHz) per connector, used in pairs) at the reduced
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Zl, cl
Z2, C2

* +

PHYSICAL CONFIGURATION

(a)

(b)

Fig. 4. Junction of dissimilar lines. (a) Physical configuration. (b) Elec-
trical circuit.

1-’-1
Zl, cl

o

Pi

c Z2, C2
o a

L’=L-CZ12 L’= L- CZ22

C’=C-L/Z12 C’=C-L@2

Fig. 5. Equivrdent transition circuits for LC<l/@2.

frequency range so that their effect on the measurements

could be neglected.

The microstrip lines used for the measurements were

defined by photolithography using electroless copper-plated

alumina substrates 2.0 x10.0 X0.25-in size, and having a

dielectric constant of 9.74 measured at low frequency. The

final metallization thickness was about 1.3 roils. In most

cases, the conductors were gold-flashed to ensure good

contacts. The substrate enclosure was an aluminum bed

with removable sides that held the substrate against the

bed by means of small ridges. These sides extended about

1.5 in above the substrate. A metal top was available for

the substrate enclosure, but was seldom used because it

had negligible effect below about 3 GHz, and above that

frequency accentuated the effects of higher mode reso-
nances. The ends of the enclosure were tapped to accept

either a GR-900 connector or a flat copper plug. With a

copper plug in place, the microstrip was effectively

terminated at that end by a flat plate short with no

discontinuity effect.

With copper plugs at both ends, the microstrip could be

GR-900 COAX

<$:;:ER

T

Fig. 6. Microstrip test piece.

MEASURE RESONANT FREQUENCIES OF LONG MICROSTRIP

SHORTED AT BOTH ENDS

I

C7+3
FIT DATA TO DISPERSION FUNCTION, ,Jf)

REPLACE ONE SHORT WITH TRANSITION TO COAXIAL LINE

IZA

–iZA

PREDICT CHARACTERISTIC FREQUENCIES PRESENTING

IMPEDANCES OF O,W, + jZA AT TRANSITION

(a)

SLOTTED LINE TRANSITION MICROSTRIP

I

‘M ‘L

FOR ti2 LC<<I AT FREQUENCIES FOR WHICH

XM Is XL Is

WL o

-1/lJc

wL*ZA/(l TIJCZA) * ZA

FINALLY, DE-EMBED ZA

(b)

Fig. 7. (a) Slotted line method (dispersion measurement). (b) Slotted
line method (transition and impedance measurement).

resonated with a temporary stub attached to an OSM

connector in the side of the enclosure midway along the

line, as shown in Fig. 6. By observing reflection coefficient

dips, resonant frequencies were measured for two gap

widths, and the results extrapolated for infinite gap width.

Alternatively, at each resonance, the gap width was gradu-

ally increased and the frequency observed at which the

resonant dip approached the swept frequency baseline. The

microstrip line widths were 0.10, 0.25, and 0.50 in.
Three measurement methods were tested; they are de-

noted as the slotted line, the real-axis intercept, and the

group-delay methods. The slotted line method is outlined

in Fig. 7. First, the copper plugs are used to terminate the

microstrip at both ends with flat plate shorts. Resonant

frequencies are measured and, if necessary, corrected fo~
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probe capacitance. These frequencies are investigated

graphically versus the order of the resonance for smooth-

ness and used to compute the frequency dependent effec-

tive dielectric constant c,

(-)
2

6’= ;;
(lo)

where n is the number of half-wavelengths along the line, c

is the speed of light in vacuum, f is the resonant frequency,

and 1 is the length of the line.

The discrete values of c, are fitted to any appropriate

mathematical function to allow prediction of C, with

frequency. Then, when one copper plug is replaced by a

GR-900 connector, frequencies can be predicted for which

the shorted line presents (lossless assumption) shorts, opens,

or + jZxt at the junction with the connector, as indicated

on the Smith chart of Fig. 7(a). Reactance at each of these

frequencies is measured with a GR-900 slotted line, using a

shorted coaxial reference to define the terminal plane at

the connector end of the microstrip.

A slotted line is used because it eliminates equipment

calibration; only distance and frequency are measured. The

stability of a synthesizer makes frequency errors negligible.

Uncertainty in distance is about +0.1 mm, or less than 0.1

percent, in wavelengths at 2 GHz. The author believes that

most of the scatter in this type of measurement arises not

from the measuring equipment or technique, but from the

test piece itself. Possible sources of error are inhomogeneity

of the substrate, imperfect uniformity of the line width,

and extraneous resonance effects resulting from contact

problems, particularly with the ground plane.

As indicated in Fig. 7(b), the reactance measurements

yield oL, – l/tiC, and QL + ZA/(1 T uCZA) allowing 2A

to be determined. The values of L and C found were small

[7], justifying the use of a two-element transition circuit in

accordance with Fig. 5. Although not illustrated in this

paper, both L and C of the transition appeared to increase

with frequency [7]. This is believed to be caused by the

change with frequency of the field configuration of micro-

strip as the power becomes more concentrated in the

dielectric-filled part of the line.

The results of measurements on a 0.25-in-wide line are

shown in Fig. 8. Point-by-point values of L and C were

used to de-embed 2A for one curve and best-fit constant

values of L and C for the other curve.

If there is a consistent error in the value used for L or C,

values found for ZA at consecutive measured frequencies

will alternate above and below the correct value. When this

saw-toothed effect is found in the reduced data, the best

value for 2A lies halfway between alternating consecutive

points.

Fig. 8 illustrates a characteristic that will be found for

2A measurements of all lines by all methods. First, there is

a gradual decrease in 2A with frequency followed by an

increase to beyond the zero-frequency value of 2A as

frequency continues to rise.

The real-axis intercept method of measurement is illus-

trated in Fig. 9. A long, uniform, symmetrical microstrip

54 I 1 I I I I [

52

t

— L,C FROM DATA AT FREQUENCY

.----- .-. L=0315.H, C= O02,F i
.

4 sm’rTEDLINEMETHoD “o .4025 INCH STRIP ON 025 INCH THICK ALLIMINA

L_Q0 05 10 15 20 25
FREQUENCY (GHz)

Fig. 8. Measured ZA of 0.250-in line by slotted line method.

LONG, SYMMETRICAL MICROSTRIP
LOW REFLECTION CONNECTORS

zl jX MICROSTRIP jX= j(d-uC Z12)

Z1

I I

MEASURE IMPEDANCE VS FREQUENCY
WITH LOW REFLECTION TERMINATION

x2

o

xl

x = (xl + x2)/2

ZA = d=

Fig. 9. Real-axis intercept method.

is placed in a measuring system having very low internal

reflections, including connectors and a matched load. As

pointed out in the discussion on transitions (Fig. 5), the

transition circuit can be incorporated into the transmission

line external to the microstrip, except for a single residual

reactance or susceptance. This measurement arrangement

can be represented by the circuit of Fig. 9.

Conventional circuit analysis indicates that as frequency
is swept, the input impedance makes nearly circular spirals

on the Smith chart. Xl and X2 are the extreme values of

reactance whose algebraic average X is the residual reac-

tance of the transition; that is, X= (Xl+ X2)/2. On each

rotation, the spiral passes through the center of the Smith

chart and crosses the real impedance axis again at some

value R. Solution of the expression for input impedance of

the circuit of Fig. 9 for zero imaginary part yields the value

R. Rearrangement of the result gives 2A as
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Fig. 10. Measured Z,4 of 0.500-in line by real-axis intercept method.

LONG MICROSTRIP SHORTED AT ONE ENO

Z} TRANSITION MICROSTRIP

~

r‘M ‘M, T

MEASURE T= -d5/du USING
TWO CLOSELY SPACED FREQUENCIESNEAR XM =O

T=A~M . 2AXM

2?rAf VAf

ZA.ZJ~
.(1+0)

WHERE
n= LENGTH OF MICROSTRIP IN HALF-WAVELENGTHS

Fig. 11. Group-delay method.

Rigorously, X2 should be referred to the frequency at

which R was measured; however, in practice, it was found

to be small enough to be neglected altogether. If R is near

21, the impedance locus is nearly parallel to the real axis,

and a small internal reflection in the measuring system can

cause a significant error in the real-axis crossing. Thus,

poor accuracy would be expected for 2A= 21.

Fig. 10 shows the results of real-axis intercept measure-

ments on a strip 0.5-in wide. The decline, then rise, of

impedance with frequency is similar to that observed for

the 0.25-in-wide line using the slotted line method. For one

set of measurements, the contact of the enclosure sides was

broken, except at the top ends, to perturb any surface wave

or higher mode currents. No significant effect was ob-

served up to 3 GHz.

The group-delay method of measuring 2A is important

because it is almost independent of the transition, and it is

relatively simple to perform. As is illustrated in Fig. 11, it

requires a relatively long microstrip terminated with a flat

plate short. The reflection delay [8] T is measured about

frequencies for which the shorted rnicrostrip presents zero

reactance X at the transition.

~=_@=_~ dA7= 2 dX

da 277“ df rrzl”~”
(12)

I I I I I

“w”
ISMOOTHED)

REAL-AXISZ
INTERCEPTMETHOD

GROUP DELAY METHO~

w — SLOTTED LINE METHOD

40 —

REAL-AXIS
INTERCEPTMETHOD

- \~
-. ----- ---

30 I 1 I I I I
0 10 20 30

FREQUENCY(GHz)

629

(

Fig. 12. Measured ZA of three line widths by three methods.

In (12), /3 represents the total phase shift of the reflected

wave with respect to the incident wave (i.e., the angle of the

reflection coefficient r), measured at the input port.

2A is given by

2A= 21
fT

n(l+D)
(13)

where n, an integer, is the length of the rnicrostrip in

half-wavelengths at ~ and

D=+.:.%= (’s-’.)(’. - ‘.(0))
, df

(14)
6.(6s – ‘e(o))

where c, is the substrate relative dielectric constant, and

c,(0) is the effective dielectric constant at zero frequency.

The final term in (14) was derived from the approximate

expression for C, developed in [5].

Equation (13) was derived by taking the derivative with

respect to frequency of the input reflection coefficient or

reactance of the shorted microstrip, including the rate of

change of the effective dielectric constant, for those fre-

quencies at which the input reactance is zero.

One measurement technique used by the author was to

find the small frequency difference needed for a specified

reflection phase difference observed on a network analyzer,

and to approximate the terms of (12) with differentials.

Fig. 12 shows 2A measurements for lines 0.1-,0.25-, and

0.5-in wide on the 0.250-in-thick alumina substrate. 2A for

all lines has the decline and rise characteristic observed

previously. The agreement of the different measurement

methods is considered quite satisfactory.

In summary, it can be observed that the slotted line

method gives the most information—dispersion, transition

elements, and 2A —but is the most difficult to perform
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and from which to de-embed 2A. The real-axis intercept

method is the easiest to make and from which to find 2A,

but requires excellent connectors and load. The group-de-

lay method, because it tends to “look through” the transi-

tion and connector, is probably the best method for use at

actual microwave frequencies, and most likely could be

automated for faster measurements, if necessary. Also, the

delay data can be smoothed on a piecewise-linear basis as

was done for the 70-0 line shown in Fig. 12.

Measurements of 2A from about 3 to 5 GHz showed

excessive variations caused by coupling to undesired modes.

The LSM1l-mode cutoff frequency was found by both

calculation and measurement to occur near 3 GHz.

IV. MODELS OF 2A

The first and simplest ticrostrip characteristic imped-

ance model is the constant impedance model which ap-

proximates ZA by its zero-frequency value

zA(f)=zA(o). (15)

This is a practical approximation because actual 2A de-

creases only by about 2 percent and rises to the zero-

frequency value again at about the maximum frequency at

which the substrate would be used. For example, an alumina

substrate 0.025-in thick would be used up to a maximum of

18 GHz, typically.

The next simplest model is the wave impedance model

[2], so-called because it describes the characteristic imped-

ance variation with frequency of any mode on a homoge-

neous transmission line. For microstrip, this would require

ZA to be proportional to the reciprocal of the square root

of the effective dielectric constant

zA(f)=zA(o)/~. (16)

The wave impedance model for ZA follows the measure-

ments in the lower frequency range more accurately than

the constant impedance model, but continues to decline

even when measured 2A reverses its slope.

The LSE model predicted that the power-current imped-

ance definition could be expected to describe microstnp

2A approximately; however, “goodness of fit” could be

determined only by measurement. As shown in Fig. 12, the

power-current model has zero slope at zero frequency,

declines to a broad minimum of about the same value at

about the same frequency as the measurements, and in-

creases thereafter at about the same slope.

A derivation of an algebraic expression for the LSE

power-current model of 2A is given in the Appendix. The

result, while easily programmed, is too complicated for

evaluation by a hand calculator. A simpler expression,

termed the group-delay model is found by replacing ~/n in

(13) by its equivalent determined from (10), and then

forming the ratio ZA(j)/ZA(0)

ZA(f) T(f) ~’e(0)/’e(-f)— .
2A(O) T(0) “ l+ D(f) “

(17)

Making the heuristic assumption that

~(f) = ‘e(f)

T(0) 6,(0)

results in

ZA . ZA(0) F
+“

(18)

(19)

This approximate formula is a close fit to the LSE power-

current model to well beyond the frequency at which 2A

rises through 2A(O).

Approaching infinite frequency, the group-delay model

becomes

ZA(CO)= zxl(o)~m (20)

while the LSE power-current model becomes

i

<e(o)
zA(m)=zA(o).:” y .

C,—1
(21)

s 6,(0)–1 “

These differ by about 30 percent for a 50-0 line on

alumina. Derivation of (21) is discussed in the Appendix.

V. DISCUSSION

Repeatability of impedance measurements was within

about 0.5 percent. Scatter varied from about 0.5 percent to

2 or 3 percent, and occasionally more. It was greater for

the 7042 test pieces than for the others. Above 3 GHz,

higher mode coupling was clearly a major source of error.

Some ideas about measurement error were given in the

section on measurements. In general, there appeared to be

a number of causes of scatter, but they were not tracked

down.

Differences between the actual measurements and the

LSE power-current (or group-delay) model arise from three

possible sources: the actual microstrip is not ideal (in-

homogeneities of substrate and line width, and contact

problems); measurements are not ideal (effect of small

reflections and instrument calibrations); or the model only

approximates microstrip (other coupled modes not in-

cluded). No attempt has been made to separate the errors

from these sources at this time (below 3 GHz).

The surprisingly large frequency variation of the mea-

sured impedance of the 70-0 line and its deviation from the

model are unexplained and indicate the need for corrobo-

rative investigation. However, of the 2A models described,

the LSE power-current model is the most faithful over the

widest frequency range to the characteristics measured on

actual microstrip and has sufficient accuracy for rnicrostrip

circuit design.1

10ne of the reviewers of this paper has proposed that other power-cur-

rent models of microstrip might give better results than the LSE model,

and suggests specifically computations based on the actuaf microstrip
field [12], and the planar waveguide model with frequency dependent

effective width [13]. The author believes that such a comparison of models
(with relation to experimented results) would be a useful investigation, but
M beyond the scope of this paper.
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This conclusion is supported by the work of Jansen and

Koster [9], who found that a hybrid-mode numerical analy-

sis of junctions between microstrips of different widths

agreed best with circuit representations when a power-cur-

rent definition of 2A was assumed. Their work also tends

to confirm that 2A is the same for a microstrip-to-micro-

strip junction as for a coaxial Iine-to-microstrip junction.

Thus, Bianco’s suggestion of a frequency-sensitive ideal

transformer at the transition [10], while mathematically

possible, need not be invoked.

The power-current LSE model probably holds only for

thin strips which, with their ground planes, are in intimate

contact with their substrates. It would not be likely to hold

for suspended substrate lines or thick center conductors

[11], because the LSE assumption (electric field tangential

at the interface) would not hold as well, and so neither

voltage nor current could be defined uniquely.

APPENDIX

POWER-CURRENT IMPEDANCE ANALYSIS

The power-current definition of the characteristic imped-

ance 2A of the LSE model for microstrip is derived below.

Following Collin [6], a Hertzian vector R in the x-direc-

tion with a wave function # is used to determine the fields

of the fundamental LSE (or TE, in this case) mode in the

structure of Fig. 3, assuming propagation in the z-direc-

tion. Let

~=~o$ze–yz

$,= f coshyixi

in which

f. unit vector along the x-axis;

Y = X~/c)& propagation constant;

(d

c

c=

i

6,

y:= (@/c)2

(6, - 6,)

Also

and

(Al-a)

(Al-b)

(Al-c)

radian frequency;

speed of light in vacuum;

frequency dependent effective

dielectric constant;

index denoting dielectric (1) or air

(2) regions;

dielectric constant of the region i,

c1=c~andt2=l; (Al-d)

transverse (x-directed)

propagation constant in the

region i; and a constant. (Al-e)

Xl=x for O<x<s (Al-f)

xz=s+a’–xfors<x <s+ a’. (Al-g)

The term U* introduced into the denominator of (Al-b)

prevents the fields from disappearing at zero frequency.

It can be shown [6] that

E_= – jupv Xfi (A2-a)
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and

~=vv.f+k:f (A2-b)

where p is the permeability of free space, that

(A2-c)

and that the propagation constants are related by

y2+y:+k:=0. (A2-d)

An approximate solution for y was found in [5]. It

follows that with z-variation suppressed, the fields are

EX=EZ=O (A2-e)

IJYB,Ey, . j— coshyixi
U

Biy2
HX, =–—

(02
coshyixi

(A2-f)

(A2-g)

HY=O (A2-h)

Hz, = (–l)i~ sinhy,xi. (A2-i)

Power in the z-direction, P of (5), can be written in terms

of the fields as

P = – ~ Re~EYH~dxdy. (A3)

The wave impedance ZW is

zw=–:=~
x

(A4)

which is independent of position or region on a transverse

surface [2].

Now, substituting (A4) into (A3), and integrating over

dielectric and air regions separately gives

p = jtdp–[H 1
b ‘lHX112dxdy +~b’~+a’]HX,12dxdy .

Y 00

(A5)

Similarly, an expression for longitudinal current 1 on the

conductors of both regions is

JI = 2 ‘HX, dx + 2~ + “’HX. dx,
o s

(A6)

Now, if the z-directed magnetic fields are matched at the

air–dielectric interface, the electric potential will also be

matched if y is maintained in agreement with the trans-

verse resonance condition in [5, (8)]. Matching the Hz, gives

Blyl sinhyls = – B2Y2sinhy2a’. (A7)

Employing (Al-d) and (Al-e) and rearranging gives

r

Bz c, – C. . sin((IJ/c)/~s
—.
B1 <.–1

(A8)
sinh( u/c)~~a’ .

The power-current definition of apparent characteristic

impedance 2A was given in (8) of the text. Equations (A5)
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and (A6) are substituted into (8), using (A2-g) and (A8),

and the resulting expression is simplified by employing

equalities of the following form:

sin(ti/c)~~s
sine Iylls =

((.@)/~s
(A9-a)

sinh(~/c)f”a’
sinchyz a’ =

(~/c)~~a’ “
(A9-b)

This leads to the final relationship for ZA, the power-

current characteristic impedance of the LSE model

(l+sinc21y11s)+~~

“( )
~ ‘y’”, 2(1+ sinch2y2a’)

smh y2a

[Skcly,ls+!z{; ~

~- (:%$)sinchy’afr

[5, (8)], which requires that Iylls ~ 7r/2 as u + co. The

result is given in (21).

Equations (A1O), (A12), and (21) show that ZA is inde-

terminate for c. = c,(O)= 1. This occurs because dimen-

sions are related to impedance by means of ratios of

differences of dielectric constants for the LSE model. Res-

olution of the indeterminacies would require knowledge of

the functional relation between cJO) and c, as t, ap-

proaches unity.
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[1]

(A1O)
[2]

[3]

[4]

[5]

where q. is the impedance of free space. The relations [5,

(4a) and (4b)] are, in the notation of this paper

a’ ~o . f, – 6,(O)—. (All-a)
b’ 2zA(o)&@J ‘s –1

6,(0)–1

~ = 2ZA((7~ “
(All-b)

f~–1 “

Use of (All-a) and (All-b) will leave the factor b’/b to

be evaluated. This quantity must be found experimentally

for microstrip, as observed in [5].

When (All-a) and (All-b) are substituted into (A1O)

and frequency allowed to approach zero, all sine and sinch

tend to unity, and sin lylls/sinhy2 a’ becomes

(s/a’)/(f. - Cc(o))/(fe(o)-l).

The predicted zero-frequency impedance is

ZA (0)=
qob/s c,(0)–1

(A12)
2~” ‘s–1 -

This can be seen to be equivalent to a rearrangement of

(All-b), which was derived in [5] by forcing agreement

between microstrip and LSE parameters at zero frequency.

Thus, ZA(0) is the same as static determinations of micro-

strip characteristic impedance.

The apparent power-current characteristic impedance at

infinite frequency ZA(co) is found by observing that the

second terms of both denominator and numerator of (A1O)

go to zero, and that yl is indeterminate. The indeterminacy

is resolved by appeal to the transverse resonance relation

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

continuing support during the course of the work.
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